Select Your Language

Notifications

webdunia
webdunia
webdunia
webdunia

डेटा सेक्टर में करियर

Advertiesment
हमें फॉलो करें Career in data sector
webdunia

डॉ. संदीप भट्ट

Career in data sector : डेटा एक ऐसा शब्द है, जो इन दिनों बहुत अधिक इस्तेमाल होता है। साधारण शब्दों में डेटा को समझें तो इसका मतलब किसी आंकड़े, किसी अंक या जानकारी से होता है। बीते दशकों में कंप्यूटिंग और इंटरनेट ने जीवन के हर क्षेत्र में अपना दखल बढ़ाया है। आज कामकाज के हर फील्ड में कंप्यूटर का उपयोग साफ दिखता है।
 
इसके साथ ही इंटरनेट ने कनेक्टिविटी और कम्युनिकेशन को और बेहतर कर दिया है। ऐसे में डेटा का क्षेत्र भी विस्तृत हुआ है। इस फील्ड में करियर के शानदार ऑप्शंस भी बहुत तेजी से बढ़ रहे हैं। अक्सर इन दिनों आपने टीवी या इंटरनेट पर डेटा साइंस के किसी कोर्स या इस सेक्टर में करियर बनाने का कोई विज्ञापन अवश्य देखा होगा। हर तरफ आज डेटा की बात होती है। ऐसे में इस सेक्टर में जाहिर तौर पर करियर ऑप्शंस भी बहुत बन रहे हैं।
  • मॉडर्न टाइम्स में डेटा को फ्यूल कहते हैं।
  • दुनिया की दिग्गज कंपनियां डेटा के कारोबार से ही फलफूल रहीं।
  • डेटा से मार्केट को ड्राइक और सेट करना आसान।
  • बहुत बुनियादी डेटा किसी सेक्टर के विविधि आयामों को समझने में कारगर।
  • ग्लोबल लेवल पर डेटा से जुड़े अलग-अलग रोजगार के अवसर लगातार बढ़ रहे।
  • ई-कॉमर्स इंडस्ट्री, मैन्युफैक्चरिंग, बैंकिंग,फाइनेंस, एजुकेशन, हेल्थ केयर, ऑटोमेशन आदि क्षेत्रों में डेटा से जुड़े एक्सपर्टस की बड़ी जरूरत।
डेटा साइंटिस्ट हों या फिर विश्लेषक। डेटा इंजीनियर हों या फिर कंप्यूटिंग, एआई, बैंकिंग, आईटी सहित लगभग हर फील्ड में इन दिनों डेटा एक्सपर्ट्स की जरूरत होती है। डेटा सेक्टर में दो बुनियादी तरह के कामकाज होते हैं। इन्हीं के आधार पर समझते हैं कि इनमें करियर कैसे बनाया जा सकता है, तो आइए जानते हैं कि डेटा सेक्टर में करियर कैसे बनाया जा सकता है।

डेटा एनालिटिक्स
मोटे तौर पर समझें तो डेटा से जुड़े हुए दो तरह के करियर ऑप्शंस दिखते हैं। एक तो डेटा एनालिसिस है और दूसरा डेटा साइंस या डेटा इंजीनियरिंग का फील्ड है। दोनों ही सेक्टर्स आपस में जुड़े हुए भी हैं। डेटा एनालिटिक्स यानी डेटा का विश्लेषण एक ऐसा क्षेत्र है जिसमें आप आंकड़ों का विश्लेषण करते हैं। अगर आप एक डेटा विश्लेषक के रूप में अपना करियर बनाना चाहते हैं तो आपको कुछ बुनियादी बातें समझनी चाहिए। इन दिनों बहुत से संस्थान और यूनिवर्सिटीज डेटा साइंस से जुड़े कई कोर्स ऑफर करते हैं। इसके अलावा कंप्यूटर इंजीनियरिंग के स्टूडेंट्स भी इस सेक्टर में बहुत अधिक संख्या में आते हैं।
  • बिजनेस एनालिटिक्स, बिजनेस इंटेलिजेंस, मार्केटिंग, डेटा साइंस से जुड़े लोगों के लिए बनते हैं ऑप्शंस।
  • बिग डेटा, मशीन लर्निंग, डेटा एनालिटिक्स जैसे सब्जेक्ट्स भी इसी से जुड़े हैं।
  • नॉन कंप्यूटिंग बैकग्राउंड के लोग भी डेटा से जुड़ा कोई सर्टिफिकेट या डिप्लोमा आदि कोर्स कर सकते हैं।
तो ऐसे में अगर आपका बैकग्राउंड इंजीनियरिंग का नहीं है और आप डेटा के फील्ड में कुछ करना चाहते हैं तो किसी अच्छे इंस्टिट्यूट या यूनिवर्सिटी से बिजनेस एनालिटिक्स, बिजनेस इंटेलिजेंस, डेटा साइंस, बिग डेटा जैसे कोर्स किए जा सकते हैं। इसके साथ ही मशीन लर्निंग आदि सब्जेक्ट्स के अंतर्गत भी डेटा एनालिटिक्स पढ़ा जा सकता है। अगर आप नॉन कंप्यूटिंग बैकग्राउंड से हैं तो डेटा से जुड़ा कोई सर्टिफिकेट या डिप्लोमा आदि कोर्स कर सकते हैं। इस तरह के विषयों में ऑनलाइन कोर्स किए जा सकते हैं। कोर्स करने से इस सेक्टर की बुनियादी बातें आसानी से समझी जा सकती हैं।
 
डेटा इंजीनियरिंग
डेटा इंजीनियरिंग आमतौर पर बड़े पैमाने पर डेटा एकत्रीकरण, डेटा स्टोरेज और उनके विश्लेषण करने के लिए सिस्टम डिजाइनिंग का काम है। यह इंजीनिरिंग और कंप्यूटिंग का मिक्स फील्ड है। इसलिए डेटा इंजीनियरिंग के सेक्टर में करियर बनाने के लिए आपको बारहवीं मैथ्स और साइंस सब्जेक्टस के साथ होना जरूरी है। इसके बाद आप किसी कॉलेज या यूनिवर्सिटी से कंप्यूटिंग से जुड़ी कोई डिग्री कर सकते हैं, वहीं दूसरी तरफ डेटा एनालिटिक्स जैसे सब्जेक्ट को पढ़ने के लिए किसी भी मान्यता प्राप्त बोर्ड से बारहवीं होना जरूरी है।

अगर मैथ्स और साइंस बैकग्राउंड हो तो ज्यादा बेहतर होता है, लेकिन अगर सोशल साइंसेज में इकॉनामिक्स या स्टैटिक्स या फिर कॉमर्स जैसे सब्जेक्ट के साथ 12वीं किया है तो यूनिवर्सिटी लेवल पर बिजनेस मैनेजमेंट, इकॉनामिक्स या फिर स्टैटिक्स जैसे सब्जेक्टस में बैचलर की डिग्री करना फायदेमंद होता है।
  • डेटा से जुड़े किसी भी करियर में डेटा एकत्रीकरण, डेटा स्टोरेज और उनका एनालिसिस जैसे काम होते हैं।
  • डेटा इंजीनियरिंग के डेटा से जुड़े काम करने के लिए सिस्टम डिजाइनिंग करते हैं।
  • डेटा इंजीनियरिंग, कंप्यूटिंग और इंजीनिरिंग का मिक्स फील्ड है।
  • डेटा इंजीनियरिंग के सेक्टर में करियर बनाने के लिए मैथ्स और साइंस का बैकग्राउंड होना जरूरी।
  • सोशल साइंसेज में इकॉनोमिक्स या स्टैटिक्स या फिर कॉमर्स जैसे सब्जेक्ट के स्टूडेंट्स भी इस सेक्टर में करियर तलाश सकते हैं।
  • नॉन साइंस के लोग यूनिवर्सिटी में मैनेजमेंट या इकॉनोमिक्स या फिर स्टैटिक्स जैसे सब्जेक्टस से ग्रेजुएट होकर डेटा में करियर तराश सकते हैं।
एक बात ध्यान रखना बहुत जरूरी है कि डेटा इंजीनियरिंग हो या एनालिसिस, इस फील्ड में काम करने के लिए किसी भी कैंडिडेट का गणित और स्टैटिक्स में रुझान होना जरूरी है। इसके साथ ही कंप्यूटर में भी रुचि होना जरूरी है। इसका कारण यह है कि आज बिना कंप्यूटिंग के ज्ञान के बहुत बड़े पैमाने पर डेटा साइंस में काम करना असंभव है।
 
स्किल्स और एप्टिट्यूड
हर प्रोफेशनल फील्ड की अपनी कुछ स्पेशल जरूरतें होती हैं। डेटा इंजीनियरिंग और डेटा एनालिसिस, दोनों ही कंप्यूटिंग से जुड़े फील्ड हैं। ऐसे में एक कैंडिडेट में इन दोनों ही करियर्स के लिए कुछ बेसिक तो कुछ एडवांस्ड स्किल्स होना जरूरी है।

एक डेटा इंजीनियर में कोडिंग स्किल्स होनी बहुत जरूरी है। इसका मतलब है कि उसे पॉपुलर कंप्यूटिंग प्रोग्रामिंग लैंग्वेजेंस आनी चाहिए। इसके साथ ही उसका रुझान मशीन लर्निंग, बिग डेटा टूल्स, क्लाउड कंप्यूटिंग जैसे क्षेत्रों में भी होना जरूरी है।
 
डेटा एनालिटिक्स से जुड़े प्रोफेशनल्स के भीतर स्टैटिक्स का अच्छा ज्ञान जरूरी है। उसे आंकड़ों से लगाव होना जरूरी है। कंप्यूटिंग का एडवांस नॉलेज बहुत जरूरी है। इसके साथ ही कुछ प्रोग्रामिंग लैंग्वेजेस जैसे कि पाइथन, आर, जावा स्क्रिप्ट और डेटाबेस आदि से जुड़े सॉफ्टवेयर्स का ज्ञान भी जरूरी है।
 
कार्यक्षेत्र
डेटा वैज्ञानिक और डेटा विश्लेषक डेटा की सहायता से सटीक जानकारी जुटाने का काम करते हैं। इसे ऐसे समझें कि एक डेटा विश्लेषक किसी भी क्षेत्र में किसी ट्रेंड को जानने-समझने के आंकलन आदि के परिणाम प्राप्त करने के लिए डेटा सेट का विश्लेषण करते हैं। वहीं डेटा इंजीनियर कंप्यूटिंग की मदद से किसी डेटा को एकत्र करने, उसकी पुष्टि और प्रोग्रामिंग आदि तैयार करने के लिए किसी सिस्टम को बनाते हैं।
 
दोनों ही फील्डस को सरल शब्दों में समझें तो एक डेटा विश्लेषक किसी सेक्टर से जुड़े विशाल डेटा का अपने संबंधित क्षेत्र के लिए विश्लेषण करता है, जबकि डेटा इंजीनियर डेटा को इकट्ठा करने के लिए प्रोग्राम्स और सिस्टम्स तैयार करते हैं।
 
सैलरी और ग्रोथ
डेटा एनालिसिस हो या डेटा इंजीनियरिंग, दोनों ही फील्ड में सैलरी अच्छी है। दुनियाभर में अलग-अलग सेक्टर्स में सैलरी और करियर ट्रेंड्स पर नजर रखने वाली फर्म ग्लॉसडोर का आंकलन है कि किसी एक डेटा इंजीनियर को एंट्री लेवल पर सालाना 9 लाख तक का पैकेज मिल सकता है। यही सैलरी डेटा एनालिसिस्ट की भी होती है। हालांकि रिक्रूटमेंट करने वाली कंपनियां हमेशा अच्छे स्टूडेंट्स को ही हायर करती हैं।
 
ऐसे में आप किस संस्थान से पढ़ रहे हैं इसका भी बहुत असर पड़ता है। हालांकि ये कोई यूनिवर्सल फॉर्मूला नहीं है। इसलिए कई बार मीडियम लेवल के इंस्टिट्यूट्स से पढ़ने वाले स्टॅूडेंट्स भी कैंपस प्लेसमेंट्स ड्राइव्स में बहुत अच्छा परफॉर्म कर लेते हैं। बहरहाल इन दोनों ही फील्ड्स में आपका अनुभव जैसे-जैसे बढ़ता रहेगा, सैलरी भी बहुत बेहतर होती रहेगी।
 
फ्यूचर ट्रेंड्स
टेक इंडस्ट्री एक्सपर्ट्स मानते हैं कि मौजूदा समय में 1 लाख से अधिक डेटा साइंटिस्ट की जरूरत है। चूंकि दिनोंदिन कंप्यूटिंग का इस्तेमाल हमारे जीवन में बढ़ता ही जा रहा है और सर्विस सेक्टर्स के बहुत से कामकाज ऑनलाइन हो रहे हैं। ऐसे में डेटा के जरिए इंडस्ट्रीज की आवश्यकताओं के अनुरूप कामकाज चलाने के लिए अच्छे कैंडिडेट्स की बहुत आवश्यकता होगी।
 
डेटा आज टेक इंडस्ट्री का एक बज वर्ल्ड है और आने वाले दिनों में इनकी डिमांड बहुत बढ़ेगी। आने वाले समय में पूरी ई-कॉमर्स इंडस्ट्री, मैन्युफैक्चरिंग, बैंकिंग, फाइनेंस, एजुकेशन, हेल्थ केयर, ऑटोमेशन आदि क्षेत्रों में डेटा से जुड़े एक्सपर्टस की बहुत जरूरत होगी। कुल मिलाकर देखें तो डेटा सेक्टर करियर के लिहाल से बहुत शानदार फील्ड साबित हो सकता है।

Share this Story:

Follow Webdunia Hindi

अगला लेख

जम्मू-कश्मीर में बड़ा हादसा, 300 फुट गहरी खाई में गिरी बस, 37 लोगों की मौत, 19 घायल